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1. Introduction

We consider the properties of numerical solutions of a wave equation for the electric field E, [3],
0021-9

doi:10.

E-m
cDt
2

� �2

r�r� EþK � E ¼ S; ð1Þ
which arises in implicit plasma simulations and is similar to those that occur in many contexts. Compared with
the standard Helmholtz equation [6, p. 68], (cDt/2)2 replaces �(c/x)2, and Eq. (1) is solved each time step
(instead of for each value of x) for E with S given. The source term, S, is neither divergence nor curl-free
in general.

Specifically, we ask under what conditions charge conservation is satisfied. Namely, do numerical solutions
of Eq. (1) satisfy Poisson’s equation,
r � K � E� S½ � ¼ 0; ð2Þ

which is derived from Eq. (1) by forming its divergence. We note that the dielectric susceptibility, K, is a
tensor with symmetric and anti-symmetric components.

A number of reasons why the numerical solutions may not satisfy Eq. (2) are given in Jiang et al. [7].
Among them are parasitic modes and errors in the difference equations that cause them not to satisfy the vec-
tor identity,
r � r �r� E ¼ 0: ð3Þ

In addition they cite a more fundamental reason: The Maxwell equations comprise eight equations with only
six unknowns so that solutions are overdetermined. Their remedy is the addition of unknowns to the
equations, whose presence contributes nothing to the solutions of Eq. (1), except additional boundary condi-
tions that assure a solution of Eq. (2). Here we assume that neither of the first two errors occurs in the numer-
ical solutions, and limit our consideration to a third source of error; inconsistently formulated boundary
conditions. Our approach is to examine a weak formulation of Eq. (1) that displays explicitly the boundary
conditions for which a solution of Eq. (1) also satisfies Eq. (2).
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2. The weak formulation

We integrate the scalar product of Eq. (1) with an arbitrary but sufficiently smooth test function E0 2 R3,
over the domain D 2 R3,
I ¼
Z

D
E0 � cDt

2

� �2

r�r� EþK � E� S

" #
dV : ð4Þ
We further require that E0 and E satisfy the same boundary conditions. Any E that solves Eq. (1) yields I ¼ 0.
We note there exists for E a (standard) Helmholtz decomposition,
E ¼ �r/� 1

c
oA

ot
; ð5Þ
where $ � $/ = 0 and $ � A = 0. When either n̂ � A ¼ 0, or / = const on oD, the vector and scalar potentials
are orthogonal,
Z

D
A � r/dV ¼ 0: ð6Þ
We replace E0 in Eq. (4) with its Helmholtz decomposition. There results two integrals, I ¼ IA þI/. I/, for
example is given by,
I/ ¼
Z

D
�r/0 � cDt

2

� �2

r�r� EþK � E� S

" #
dV : ð7Þ
Since $/0 or A0 are themselves suitable test functions when E0 is, IA ¼ I/ ¼ 0.
Noting that �$/0 � [$ � $ � E] = $ � [$/0 � $ � E] by Poynting’s theorem, we integrate Eq. (7) by parts to

derive I/ ¼ IV/ þIS/, where IV/ is,
IV/ ¼
Z

D
/0r � K � E� S½ �dV ; ð8Þ
and IS/ is,
IS/ ¼
Z

oD
n̂ � r/0 � r � Eð Þ½ � � n̂ � K � E� S½ �/0 dS: ð9Þ
We can now state the following theorem:

Theorem 1. Iff IS/ ¼ 0, any E that satisfies Eq. (1) also satisfies Poisson’s equation, Eq. (2).

Proof. If IS/ ¼ 0, then by Eq. (7), IV/ ¼ 0 for any suitable /0. Therefore the integrand is zero everywhere in
D and Poisson’s equation, Eq. (2), is satisfied.

If IS/ 6¼ 0, then by Eq. (7), IV/ ¼ �IS/, the integrand cannot be zero everywhere and Eq. (2) is not
satisfied.

Consider IS/. It must be zero for any suitable /0, including / corresponding to the Helmholtz
decomposition of the solution to (1), E.

The first term in the integrand in Eq. (9) will be zero if either oD is a conductor with /0 = const on oD,
ðn̂�r/0Þ ¼ 0; ð10Þ

or oD is a magnetic symmetry boundary with n̂� B ¼ const on oD so that
ðn̂�r� EÞ ¼ 0: ð11Þ

The second term in Eq. (9) will be zero for a conductor with /0 = const on oD if a compatibility condition is
satisfied,
Z

oD
n̂ � K � E� S½ �dS ¼ 0: ð12Þ
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If, as for a magnetic symmetry surface, /0 varies on oD, then the integrand in Eq. (9) is zero if and only if a
local charge conservation condition is satisfied by the solution everywhere on oD,
n̂ � K � E� S½ � ¼ 0: � ð13Þ
3. Uniqueness

We compare the boundary conditions, Eqs. (10)–(13) with those derived by integrating Eq. (4) by parts. We
assume, as above, that E is a solution of Eq. (1) so that I ¼ 0. A surface and a volume contribution comprise
I. The surface contribution,
IS ¼
Z

oD
�n̂ � r � Eð Þ � E0½ �dS; ð14Þ
is zero if n̂� E0 ¼ 0, corresponding to a conductor, Eq. (10), or if n̂�r� E ¼ 0, corresponding to a magnetic
symmetry surface, Eq. (11). There are no conditions like Eqs. (12) and (13) to be inferred from IS.

We now consider the volume contribution, IV,
0 ¼
Z

D

cDt
2

� �2

r� E � r � E0 þ E0 � K � E� Sð ÞdV : ð15Þ
With a standard form of the susceptibility, the electric field energy, E �K � E is positive for any non-zero field,
E �K � E ¼ 1þ �Pð ÞE2 þ �HE � E� Bþ �k E � Bð Þ2; ð16Þ
where �P, �H, and �k are the Pederson, Hall and parallel dielectric permeabilities (or conductivities in the case of
a collisional plasma). The field energy term is clearly a quadratic form, because the anti-symmetric term
cancels.

Let us suppose that E1 and E2 are both solutions of the variational problem with either conducting wall or
magnetic symmetry boundary conditions, Eq. (4), so that IðE1Þ �IðE2Þ ¼ 0. With E0 = E1 � E2,
0 ¼
Z

D
chDtð Þ2r� E0 � r � E0 þ ð1þ �PÞE0 � E0 þ �k E0 � Bð Þ2 dV : ð17Þ
Since every term in Eq. (17) is positive for any non-zero value of E, the equation can be satisfied only by
E0 = E1 � E2 = 0, proving that the solution to the variational problem uniquely minimizes I.

Moreover, Theorem 1 shows that Eq. (2) is satisfied because IS/ ¼ 0 with boundary conditions given by
Eq. (12) or (13). Therefore, a unique solution of Eq. (1) is obtained that also satisfies Poisson’s equation, Eq.
(2), if one applies the boundary conditions,
n̂� E ¼ 0;

Z
oD

n̂ � K � E� Sð ÞdS ¼ 0; ð18Þ
for a conducting wall, and
n̂�r� E ¼ 0; n̂ � K � E� Sð Þ ¼ 0; ð19Þ
for a magnetic symmetry boundary.
4. Numerical tests

We include numerical test results of the boundary conditions, Eqs. (18) and (19) with an implicit plasma
simulation code, CELESTE. It solves a finite difference approximation to Eq. (1) using a matrix-free, Krylov
solver with periodic boundary conditions in x and y, and specified boundary conditions in z. Details of the
implicit formulation are given in [10]. The finite difference approximation is given in detail in [2]. As noted
in [10], the difference approximations satisfy Eq. (3) only on a uniform, rectilinear grid. However, there are
methods which also satisfy Eq. (3) on non-uniform grids [5].
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Our test case is a calculation of the lower-hybrid-drift instability, which is described in detail in [4]. The
uniform, rectilinear grid comprises 64 cells in y and in z, and one cell in x. The time step is xpiDt = 0.5, where
xpi is the ion plasma frequency, and the ion/electron mass ratio is, mi/me = 180. There are 220,000 particles in
the simulation, or 27 electrons and 27 ions per cell initially. Random fluctuations in the number of particles
cause as much as a �20% cell to cell variation in the magnitude of the conductivity K in Eq. (1).

4.1. Case 1

In Case 1, the magnetic field is tangent to the top and bottom boundaries and particles are reflected in the
conducting case, Table 1. We vary the tolerance for the solver over 12 orders of magnitude in the solution of
Eq. (1) and show that Poisson’s equation, Eq. (2), converges as Eq. (1) converges. Table 1 for conducting
boundaries, Eq. (18), and Table 2 for magnetic symmetry boundaries, Eq. (19), summarize the results.

The error measures are the ratio of the L2 norm of the residual error to the L2 norm of the source, S.
Eq. (1), and the same ratio for the divergence of the residual and $ � S for Poisson’s equation, Eq. (2).
(The contribution of errors in satisfying Eq. (3) are �10�18, which is small compared with even the smallest
residual errors.) The number of iterations listed times 10 is the number of GMRES iterations to convergence.
The ratio of the error in the solution of Eq. (2) to the error in Eq. (1) is never more than 2.

4.2. Case 2

For the magnetic symmetry boundary, Case 2, the magnetic field is perpendicular to the top and bottom
boundaries, and simulation particles are absorbed there. In this case, a significant imbalance of charge builds,
as the electrons are lost more rapidly than the ions.

The results for two convergence criteria are listed in Table 2. For Case 2a, convergence is measured by kFk2,
the norm of the error in the solution of Eq. (1). For Case 2b, convergence is measured by the error in the solu-
tion of Eq. (2). The number of iterations for Case 2b is sometimes higher, but not always. At convergence, the
ratio of the errors for Eqs. (1) and (2) for Cases 2a and 2b are comparable.
Table 1
In a calculation of the lower-hybrid-drift instability with electrically conducting boundaries, the errors in the wave equation and Poisson’s
equation decrease as the solver error tolerance decreases

Tolerance Case 1 iterations kFk2 k$ � Fk2

10�3 2 7.2 � 10�4 9.5 � 10�4

10�5 3 9.7 � 10�6 9.1 � 10�6

10�7 5 9.8 � 10�8 2.0 � 10�7

10�9 6 8.8 � 10�10 1.5 � 10�9

10�11 8 9.3 � 10�12 1.3 � 10�11

10�13 9 7.2 � 10�14 1.2 � 10�13

10�15 11 7.7 � 10�16 1.4 � 10�15

Table 2
With magnetic symmetry boundary conditions, the solution error decreases as the error tolerance decreases

Tolerance Case 2a iterations kFk2 k$ � Fk2 Case 2b iterations kFk2 k$ � Fk2

10�3 2 7.3 � 10�4 6.8 � 10�4 2 7.3 � 10�4 6.5 � 10�4

10�5 3 6.5 � 10�6 1.0 � 10�6 4 5.1 � 10�6 9.3 � 10�6

10�7 4 9.8 � 10�8 1.0 � 10�7 4 9.8 � 10�8 1.0 � 10�7

10�9 6 9.7 � 10�10 2.2 � 10�9 18 3.7 � 10�10 9.4 � 10�10

10�11 7 7.9 � 10�12 1.6 � 10�11 14 4.0 � 10�12 9.8 � 10�12

10�13 9 7.8 � 10�14 1.3 � 10�13 13 4.7 � 10�14 9.6 � 10�14

10�15 10 8.4 � 10�16 1.6 � 10�15 17 4.2 � 10�16 9.4 � 10�16

The results are the same whether the error in the wave equation, Case 2a, or Poisson’s equation, Case 2b, measures convergence.
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5. Comments

We have shown analytically that correctly applied boundary conditions for a semi-discrete approximation
to electromagnetic wave propagation in a plasma, Eq. (1), yield solutions that satisfy Poisson’s equation, Eq.
(2), and that these solutions are unique. Our numerical tests using a difference method that satisfies the vector
identity, Eq. (3) and does not have parasitic modes yield results that are consistent with the analysis. We
believe these results support the view that the spurious solutions discussed in [7] are the result of numerical
error rather than a property of Maxwell’s equations. We note, that the boundary conditions used in a previous
paper [3], which were based on work described in [7], also yield accurate solutions for Eq. (1). However, the
boundary conditions are more complex than Eqs. (18) or (19).

Generally speaking, Maxwell solvers that resolve electromagnetic waves solve initial value problems. For
time resolution of electromagnetic waves, it is more efficient to march explicit equations than to solve systems
of equations iteratively each time step. Of course, charge must be conserved, but it is dealt with within a hyper-
bolic framework by adding corrections [8], constraints [11], or, as in the case of the div � curl method, by
satisfying the charge conservation equation on the boundary [7].

It may be interesting to consider embedding the solution of equations like Eq. (2), which occur in many
contexts, in a wave equation. For example, one algorithm for ionospheric current flow solves Eq. (2) for a
scalar potential field with a conductivity tensor in which the parallel conductivity is so high that E � B = 0.
This symmetry is exploited to obtain solutions in three dimensions by solving Eq. (2) in two dimensions with
respect to a locally defined coordinate system [9]. However, to include inductive electric fields as well as scalar
potential fields, one can solve Eq. (1) with appropriate values for the conductivity, K. Similarly, subterranean
water flow is modeled by solving d’Arcy’s law with an anisotropic but symmetric permeability tensor [1]. The
solutions are obtained in a local coordinate system in which the tensor is diagonalized. The advantage of
embedding in these cases is that one replaces an elliptic operator with rough coefficients by one with constant
coefficients.
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